duminică, 9 ianuarie 2011

PRINCIPIUL al II-lea al Termodinamicii

Principiul al doilea al termodinamicii precizează condițiile în care are loc transformarea energiei termice în energie mecanică. El are un caracter calitativ, arată sensul în care se produc spontan transformările, fără să se refere la cantitățile de energie schimbate. El este o particularizare a principiului general al schimburilor de energie, conform căruia transformările spontane de energie se realizează de la potențialul mai înalt spre potențialul mai scăzut.


PROCESE REVERSIBILE si IREVERSIBILE

Dacă principiul întâi al termodinamicii a fost un precursor al legii conservării energiei în domeniu proceselor termice, cel de al doilea principiu al termodinamicii a fost formulat ca o lege specifică proceselor termice. Cel de-al doilea principiu al termodinamicii reprezintă o generalizare a rezultatelor experimentale legate de funcționarea mașinilor termice.

Principiul întâi al termodinamicii pune în evidență echivalența cantitativă dintre căldură și lucru mecanic, însă el nu face nicio referire la direcția de desfășurare a proceselor termodinamice.

Se spune că un proces de trecere dintr-o stare inițială 1 într-o stare finală 2 este reversibil, dacă este posibilă revenirea în starea inițială 1 astfel încât la această stare a sistemului considerat și starea sistemelor înconjurătoare să fie identică cu starea lor inițială. Dacă la revenirea sistemului considerat în starea inițială 1, starea sistemelor înconjurătoare diferă de starea lor inițială, atunci procesul este ireversibil.

CICLUL CARNOT
În termodinamică, ciclul Carnot este un ciclu teoretic, propus în 1820 de inginerul francez Nicolas Léonard Sadi Carnot, ciclu destinat comparării randamentului termic al mașinilor termice. Este un ciclu reversibil efectuat de o „mașină Carnot” legată la două surse de căldură de temperaturi diferite („sursa caldă” și „sursa rece”). Folosește ca agent de lucru un gaz perfect prin transformările căruia se obține lucrul mecanic.


Ca orice ciclu termodinamic, și ciclul Carnot poate fi parcurs în sens orar, fiind în acest caz un ciclu motor, sau în sens antiorar (trigonometric), fiind în acest caz un ciclu generator. În cele ce urmează va fi descris ciclul Carnot motor.

Este un ciclu în patru transformări:

1.Destindere izotermă reversibilă a gazului la temperatura sursei calde, T (în fig. 1 T1, iar in fig. 2 TH). În această transformare (A-B în diagrama T-s) destinderea gazului este determinată de absorbția de căldură la temperatură constantă de la sursa caldă, iar gazul efectuează lucru mecanic asupra mediului. Cantitatea de căldură absorbită de la sursa caldă este notată în lucrările în limba română cu Q.
2.Destindere adiabatică reversibilă (izoentropică) a gazului. În această transformare (B-C în diagrama T-s) gazul continuă să se destindă efectuând lucru mecanic asupra mediului. Deoarece transformarea e adiabatică (fără schimb de căldură), prin destindere gazul se răcește până la temperatura sursei reci, T0 (în fig. 1 T2, iar in fig. 2 TC).
3.Comprimare izotermă reversibilă a gazului la temperatura sursei reci, T0. În această transformare (C-D în diagrama T-s) mediul efectuează lucru mecanic asupra gazului, determinând evacuarea căldurii din gaz la temperatura sursei reci. Cantitatea de căldură evacuată la sursa rece este notată în lucrările în limba română cu Q0.
4.Comprimare adiabatică reversibilă (izoentropică) a gazului. În această transformare (D-A în diagrama T-s) mediul continuă să efectueze lucru mecanic asupra gazului. Deoarece transformarea e adiabatică (fără schimb de căldură), prin comprimare gazul se încălzește până la temperatura sursei calde.


RANDAMENTUL TERMIC al Ciclului CARNOT
Există mai multe metode de stabilire a randamentului termic al ciclului Carnot. Pe vremea lui Sadi Carnot nu exista noțiunea de entropie. Actual cea mai simplă metodă pornește de la diagrama temperatură – entropie (T-s). După cum se observă din fig. 2, Expresiile căldurilor schimbate cu sursele sunt:




Deoareceexpresiile căldurilor schimbate devin:


Fie L suma lucrurilor mecanice, cu semnul lor, efectuate în cursul celor patru transformări ale ciclului, adică lucrul mecanic al ciclului. Din primul principiu al termodinamicii rezultă:

Randamentul termic al ciclului este, prin definiție:

Înlocuind expresiile căldurilor și a lucrului mecanic se obține:

De remarcat că expresia randamentului termic al ciclului Carnot nu limitează valoarea acestui randament. Mărirea randamentului termic al ciclului Carnot se poate face fie ridicând temperatura sursei calde, fie coborând temperatura sursei reci.

Temperatura sursei calde poate fi ridicată mult (sute de milioane de grade în cazul reacțiilor de fuziune nucleară), însă limitarea practică este dată de temperaturile la care rezistă materialele din care este făcută o mașină termică. Temperatura sursei reci poate fi coborâtă până aproape de zero absolut, însă din punct de vedere energetic coborârea temperaturii sursei reci sub temperatura mediului ambiant este ineficientă, deoarece pentru asta se consumă mai multă energie decât se obține prin ameliorarea randamentului termic al ciclului.
Ciclul Carnot are cel mai mare randament termic posibil la transformarea căldurii în lucru mecanic la ciclul motor, respectiv transferă o cantitate maximă de căldură pentru un lucru mecanic dat în cazul ciclului generator.

Se poate demonstra matematic acest fapt, însă în cele ce urmează se va explica fenomenul intuitiv. Fie un ciclu oarecare în diagrama T-s (Fig. 3) unde lucrul mecanic al ciclului este zona gri (zona 3), căldura primită de la sursa caldă este suprafața de sub curba A-B până la axa s (zonele 3, 4, 5 și 6), iar căldura cedată sursei reci este suprafața de sub curba C-D până la axa s (zonele 4, 5 și 6). Oricare ar fi forma ciclului, el poate fi circumscris de un dreptunghi. Acest dreptunghi reprezintă lucrul mecanic al ciclului Carnot care acționează între aceleași temperaturi ale sursei calde, respectiv sursei reci.

Zonele 4 și 5 evident diminuează zona gri față de dreptunghi, fără a avea influență asupra zonei de sub curba A-B, deci micșorează lucrul mecanic fără a diminua căldura primită de la sursa caldă, ca urmare randamentul termic al ciclului scade. Zonele 1 și 2 diminuează cu aceeași suprafață zona gri și căldura primită de la sursa caldă într-un ciclu Carnot, însă zona gri fiind mai mică decât cea de sub curba A-B, rezultă ca lucrul mecanic se diminuează relativ mai mult decât căldura primită, deci și în acest caz randamentul termic scade. Randamentul termic este maxim când zonele 1, 2, 4 și 5 sunt nule, adică tocmai în cazul ciclului Carnot.

Studiul ciclului Carnot permite, printre altele, definirea temperaturii termodinamice absolute. Dacă parcurgerea ciclului este reversibilă, din expresia randamentului ciclului Carnot reiese ca raportul Qcedat / Qprimit rămâne constant și independent de natura substanței de lucru, dacă mașina lucrează între aceleași temperaturi T și T0.

Niciun comentariu:

Trimiteți un comentariu